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Numerical data is challenging to compress 
losslessly
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§ Large improvements in compression possible by allowing even 
small errors
— Least significant floating-point bits are effectively random noise
— Most compressors support relative or absolute error tolerances

§ Compressors must be cognizant of how compression errors 
propagate in data analysis

(ideally zero mean)
of error with function (ideally independent)

of error (ideally uncorrelated)
of error (ideally white noise)

of error (e.g. uniform, normal, Laplace, …)
— Impact on like extrema, mean/median, moments, …
— Impact on like spatial & temporal derivatives

§ This talk will examine error distributions for several compressors

Lossy compression enables greater reduction, 
but is often met with skepticism by scientists 
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§ 1. data to make it more compressible
— E.g. prediction, fitting, transformation, decomposition, …
— Make the data sparse in some alternative representation
— Small values, repeated patterns are easier to compress

§ 2. (for lossy compression)
— E.g. scalar/vector quantization, truncation, thresholding, …
— Discard unimportant information to avoid encoding it

§ 3. remaining information losslessly
— E.g. Huffman, arithmetic, universal, run-length, dictionary, …

Numerical data compression usually involves 
three steps
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1. : adaptive scalar quantization [Iverson et al. 2013]
2. : hierarchical vector quantization [Schneider & Westermann 2003]
3. : error-bounded polynomial prediction [Di & Cappello 2016]
4. : lossless/lossy predictive coding [Lindstrom & Isenburg 2006]
5. : block transform with embedded coding [Lindstrom 2014]
6. : wavelet transform & thresholding [Clyne et al. 2007]
7. : tensor decomposition & thresholding [Ballester & Pajarola 2016]
8. : sorting and spline fitting [Lakshminarasimhan et al. 2013]

Challenge: Compress 3D scalar field, f(x, y, z), defined on uniform Cartesian grid

Case study: 8 lossy floating-point compressors 
in 8 minutes!
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§ [SQ] algorithm partitions data into ε-sized ranges
— Sort data on function value
— Greedily grow set Si as long as max Si – min Si ≤ ε
— Use as prototype pi = mean Si

• Minimizes RMS error
— Replace values assigned to set Si with index i
— LZMA compress codebook {pi} and indices {i}

SQ: Adaptive, error-bounded scalar 
quantization

✏

✏

✏

✏

S1 S2 S3 S4
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SQ error distribution is nearly uniform but 
overly conservative

−ε −ε/2 0 +ε/2 +ε 

+2 ≤ f < +4

+1 ≤ f < +2

+0.5 ≤ f < +1

−1 < f ≤ −0.5

−2 < f ≤ −1

−4 < f ≤ −2
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§ Similar to scalar quantization, but applied to multi-
component vectors
— E.g. vector/tensor fields, multiple correlated fields, blocks of values, …
— Can be done non-uniformly in both domain and range

§ Hierarchical VQ [HVQ] uses different codebook on each level 
— Vectors formed by 4 × 4 × 4 blocks of values

• Next level given by block averages
— Codebook is generated using Lloyd relaxation

• Randomly select initial prototypes
• Partition data by closest prototype
• Replace prototype with mean/medoid/Voronoi centroid

§ Most effective for low-precision data like 8-bit RGB
— Codebook size, compute time become prohibitive for higher precision

HVQ: Hierarchical Vector Quantization
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VQ errors are difficult to bound due to 
difficulty of creating good codebook

−ε −ε/2 0 +ε/2 +ε 

+2 ≤ f < +4

+1 ≤ f < +2

+0.5 ≤ f < +1

−1 < f ≤ −0.5

−2 < f ≤ −1

−4 < f ≤ −2
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§ Polynomial of degree n – 1 predicts next value from last n
transmitted values
— Use best of three predictors: constant, linear, quadratic
— “Mispredictions” outside of tolerance ±ε are corrected

SZ: Polynomial prediction extrapolates from 
past data points

2✏

x

f(x)
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SZ error distribution is approximately uniform 
and spans full tolerance

−ε −ε/2 0 +ε/2 +ε 

+2 ≤ f < +4

+1 ≤ f < +2

+0.5 ≤ f < +1

−1 < f ≤ −0.5

−2 < f ≤ −1

−4 < f ≤ −2
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fpzip: Lossless mode combines multi-
dimensional prediction with entropy coding

input
stream linearization

prediction linearization — alphabet
partitioning

probability
modeling

entropy
coding

output
stream

predict	next	data	element
from	already	coded	ones

reinterpret	floats	as
sign-magnitude	integers

compute	integer	residual
split	residual	into
sign/width,	value

update	stats
on	sign/width
distribution

assign	short	code-
words	to	frequent
sign/width	pairs

recombine	entropy
codes,	value	bits

+ 1 0010110

value bits

r =
widthsign

value	bits

sign/width
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fpzip: Lossy mode truncates (zeros) least 
significant bits, then compresses losslessly

input
stream linearization

prediction linearization — alphabet
partitioning

probability
modeling

entropy
coding

output
stream

truncation

truncation



LLNL-PRES-736379
14

fpzip error distribution is dependent on 
function value f and is highly biased

−ε −ε/2 0 +ε/2 +ε 

+2 ≤ f < +4

+1 ≤ f < +2

+0.5 ≤ f < +1

−1 < f ≤ −0.5

−2 < f ≤ −1

−4 < f ≤ −2
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fpzip systematic rounding toward zero leads 
to occasional issues in climate data analysis

#31, #33 compressed 
ensemble members
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Raw floating-
point array

Block floating-
point transform

Orthogonal
block transform

Embedded
coding

Compressed
bit stream

§ Align values in a 4d block to a 
common largest exponent

§ Transmit exponent verbatim

§ Lifted, separable transform 
using integer adds and shifts

§ Similar to but faster and more 
effective than JPEG DCT

§ Encode one bit plane at a time 
from MSB using group testing

§ Each bit increases quality—
can truncate stream anywhere
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Free parameter t
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Haar
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transform family parameter t

x += w; x >>= 1; w -= x;
z += y; z >>= 1; y -= z;
x += z; x >>= 1; z -= x;
w += y; w >>= 1; y -= w;
w += y >> 1; y -= w >> 1;
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ZFP error distribution is normal due to linear 
transform of iid. errors (central limit theorem)

−ε −ε/2 0 +ε/2 +ε 

+2 ≤ f < +4

+1 ≤ f < +2

+0.5 ≤ f < +1

−1 < f ≤ −0.5

−2 < f ≤ −1

−4 < f ≤ −2
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§ Basis functions are given by translations and dilations of 
single mother wavelet

VAPOR: Discrete wavelet transform with 
coefficient thresholding

Haar linear B-spline cubic B-spline CDF 9/7
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VAPOR wavelet errors are difficult to bound 
due to cascading effects

−ε −ε/2 0 +ε/2 +ε 

+2 ≤ f < +4

+1 ≤ f < +2

+0.5 ≤ f < +1

−1 < f ≤ −0.5

−2 < f ≤ −1

−4 < f ≤ −2
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§ 2D structured grid data can be approximated via truncated SVD

— Singular value matrix, Σ, is diagonal but singular vectors, U and V, are data-dependent
• U and V are expensive to encode for 2D data

— A can be optimally approximated in the L2 sense by discarding smallest singular values

§ d-dimensional structured grid data can be approximated via tensor 
decomposition

— Unlike in SVD, core tensor, S, is not diagonal, but large values appear in “hot corner”
• U, V, and W matrices are relatively cheap to encode for 3D data

Tucker: Generalization of SVD using Tucker 
tensor decomposition, core tensor truncation

diag(�1, �2, . . . ,�n) = ⌃ = UT AV = unvec
�
(V ⌦ U)T vec(A)

�

S = A⇥1 U ⇥2 V ⇥3 W = unvec
�
(W ⌦ V ⌦ U)Tvec(A)

�
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As in SVD, truncated core tensor & factor 
matrices yield “best” low-rank approximation

U1

U2
U3

A

n1 ⇥ n1

n2 ⇥ n2

n3 ⇥ n3

n1 ⇥ n2 ⇥ n3

S

n1 ⇥ n2 ⇥ n3

=

S = A⇥1 U1 ⇥2 U2 ⇥3 U3

mode-1 inner product

core tensor



LLNL-PRES-736379
24

Like wavelets, Tucker tensor decomposition 
errors are difficult to bound tightly

−ε −ε/2 0 +ε/2 +ε 

+2 ≤ f < +4

+1 ≤ f < +2

+0.5 ≤ f < +1

−1 < f ≤ −0.5

−2 < f ≤ −1

−4 < f ≤ −2
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§ Most compression techniques fail miserably on noisy/unstructured data

§ [ISABELA]: Sort noisy data, encode permutation, fit smooth sorted signal

ISABELA: Sorting and spline fitting enables 
compression of even the noisiest data sets

-1.0

-0.5

0.5

1.0

-1.0

-0.5

0.5

1.0

-1.0

-0.5

0.5

1.0

-1.0

-0.5

0.5

1.0

-1.0 -0.5 0.5 1.0
-1.0 -0.5 0.5 1.0

original sorted spline fit residual

original histogram residual histogram



LLNL-PRES-736379
26

Like fpzip, ISABELA bounds relative errors, but 
without bias

−ε −ε/2 0 +ε/2 +ε 

+2 ≤ f < +4

+1 ≤ f < +2

+0.5 ≤ f < +1

−1 < f ≤ −0.5

−2 < f ≤ −1

−4 < f ≤ −2
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ZFP and SZ decorrelate error with function
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Some compressors yield autocorrelated errors

fpzip
9.61 bits/value

‖R‖ = 2.2e-2

ZFP
0.34 bits/value

‖R‖ = 2.8e-4

SZ
0.33 bits/value

‖R‖ = 4.6e-3

SQ
0.42 bits/value

‖R‖ = 4.7e-3

Tucker
0.53 bits/value

‖R‖ = 4.6e-4

VAPOR
2.94 bits/value

‖R‖ = 5.3e-4

LZ4A
0.79 bits/value

‖R‖ = 1.4e-1

HVQ
5.00 bits/value

‖R‖ = 3.1e-4

input data 
autocorrelation
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Compressors other than ZFP show artifacts in 
derivative computations (velocity divergence)
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Compressors other than ZFP show artifacts in 
derivative computations (velocity divergence)
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Compressors other than ZFP show artifacts in 
derivative computations (velocity divergence)
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§ Lossy data compression can be viable in scientific computing workflows
— ~100x compression acceptable for visualization
— ~10x compression acceptable for quantitative data analysis
— ~4x compression of simulation state with <0.1% error in final quantity of interest

§ Little effort has focused on metrics for evaluating compression errors
— Error distributions can vary greatly between compressors but are rarely considered

• Difficult to prescribe desired shape of error distribution
— Z-checker tool, developed by Cappello and others at Argonne, is a good first step

§ HPC community needs to provide analysis code with simulation results
— How else can we quantify impact of lossy compression?
— Need collection of “standard” data sets for evaluating & comparing compressors

§ What statistical metrics and properties should we be concerned with?

Conclusions
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